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Abstract. Using the factorization scheme for the nonleptonic D → V V0 weak amplitudes, we classify all
diagrams which arise in D → V γ decays and calculate them with the help of the hybrid model which
combines the heavy quark effective theory and the chiral Lagrangian approach. Thus we determine the
long distance contribution to the amplitudes of Cabibbo allowed and Cabibbo suppressed D → V γ decays.
The calculation of the expected range of the branching ratios of nine different D → V γ channels is
compared with results of other approaches. The present work establishes an increase of the parity violating
contribution in these decays in comparison with previous analyses.

1 Introduction

The study of nonleptonic decays of charm mesons has been
a subject of high priority for more than two decades and
has resulted in a wealth of experimental data, which con-
tinues to expand at a remarkable rate. This rich source
of information plays a decisive role in the development
of the theoretical treatment of these processes, which are
governed by the interplay of the weak and strong interac-
tions.

On the other hand, there is very little information
available on the sector of flavour changing radiative de-
cays of charm mesons, in which the electromagnetic inter-
actions is also operative.

Only some preliminary upper limits, at the 10−4 range,
for branching ratios of Cabibbo forbidden decays of type
D0 → V 0γ have been reported so far [1]. However, as
a result of ongoing efforts [2] it is reasonable to expect
that the experimental data on D → V γ decays will be
forthcoming during the next few years. The theoretical
treatment of these decays must address firstly the ques-
tion of the relative importance of short and long distance
contributions. For the decays studied here, the short dis-
tance process of relevance, the c → uγ transition which is
driven by the magnetic penguin diagram, is exceedingly
small being suppressed by GIM cancellation and small
CKM matrix elements [3]. The inclusion of gluonic cor-
rections [3,4] increases the free quark c → uγ amplitude
by several orders of magnitude. However, even after taking
this increase into consideration the inclusive branching ra-
tio due to the c → uγ short distance penguin reaches only
the 10−8 region, which is still much smaller than the effect
of long distance contributions. Thus, in order to estimate
these decays, one must concentrate on the treatment of
the long distance dynamics involved in the D → V γ tran-
sitions.

During the last few years several papers have
appreared in which the D → V γ transitions were con-
sidered. In [3] the first comprehensive phenomenological
study of the various D → V γ has been presented, using
mainly the techniques of pole diagrams and vector me-
son dominance. Other approaches include the use of the
quark model picture and of effective Lagrangian [5,6], the
use of QCD sum rules [7] and the hybrid model approach,
which combines heavy quark effective theory and chiral
Lagrangian [8–10]. As it will be emphasized in the last
section, the existing predictions of the various theoretical
attempts are quite divergent for some of the D → V γ
modes which underlines the urgent need for experimental
data as well as for the development of a reliable model.

It should also be mentioned that these decays offer
certain opportunities to search for signals of physics be-
yond the standard model [9,8,11], although some of the
proposed tests could be affected by the long distance con-
tributions embodied in the c → uγ transition [10].

In the present paper we aim for a more systematic
and comprehensive treatment of these decays than previ-
ously undertaken, employing the formalism of the hybrid
model [12,13] for treating the D → V γ transition [9,10].
In Sect. 2, we present the details of our approach and we
define the approximation used, in Sect. 3 we give the ex-
plicit form of the amplitudes and we conclude in Sect. 4
with a discussion and a comparative presentation of our
numerical predictions.

2 Model description

We treat the radiative decays D → V γ as originating
from the nonleptonic transition D → V V0, followed by
the conversion V0 → γ via the vector meson dominance
mechanism. Although a similar scheme has been consid-
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Fig. 1a–c. Skeleton diagrams of various contri-
butions to the long distance decay D → V γ. The
spectator diagrams of type ASpec,γ (see (2) in the
text) a, the spectator diagrams of type ASpec,V are
shown in b and the weak annihilation diagrams
AAnnih are shown in c. The square in each dia-
gram denotes the weak transition due to the ef-
fective Lagrangian Lw (1). This Lagrangian con-
tains a product of two left handed quark currents
(ψ̄1ψ2)µ, each denoted by a dot. Different diagrams
are denoted by (A) - (H). Their contributions to
the amplitudes Ai

PC and Ai
PV are specified in the

text

ered also in previous papers [3,8,10] there is no system-
atic treatment which includes all possible diagrams within
the chosen approximation. In the present paper we adopt
the factorization approach for the D → V V0 amplitude,
following the formalism advanced in [14] for the nonlep-
tonic decays of D, Ds mesons (BSW scheme). We shall
not repeat here the arguments for using the factorization
approximation, as these have been amply discussed in the
literature (see, e.g. [14,15]). We are aware that the nonfac-
torizable contributions could also play a role as it may be
the case for certain D [16] and B [17] nonleptonic decays.
However, at the present time, before any actual measure-
ments of D → V γ exist, we prefer to limit ourselves to
a simple scheme, and to keep our approach as transpar-
ent as possible, awaiting the confrontation with experi-
ment. The factorization amplitude for D → V V0 in BSW
scheme is calculated using the effective nonleptonic weak
Lagrangian

Lw = −GF√
2
VuqiV

∗
cqj

[a1(ūqi)µ(q̄jc)µ

+a2(ūc)µ(q̄jqi)µ], (1)

where (ψ̄1ψ2)µ ≡ ψ̄1γ
µ(1 − γ5)ψ2, qi,j represent the fields

of d or s quarks, Vij are the CKM matrix elements and GF

is the Fermi constant. In our calculation we use a1 = 1.26
and a2 = −0.55 as found in [14].

In (1) the quark bilinears are treated as interpolating
fields for the appropriate mesons. In order to calculate the
matrix elements we use as before [8,10] the hybrid model
which combines the heavy quark effective and chiral per-
turbation theory [12,13]. The relevant hadronic degrees of
freedom within this framework are the charm pseudoscalar
(D) and vector (D∗) mesons and the light pseudoscalar
(P ) and vector (V ) mesons. In the factorization scheme
(” vacuum insertion”) which we use, the D → V V0 ampli-
tude is schematically approximated as follows

〈V V0|(q̄iqj)µ(q̄kc)µ|D〉 = 〈V |(q̄iqj)µ|0〉〈V0|(q̄kc)µ|D〉
+〈V0|(q̄iqj)µ|0〉〈V |(q̄kc)µ|D〉

+〈V V0|(q̄iqj)µ|0〉〈0|(q̄kc)µ|D〉 , (2)

where the first two terms are the spectator contributions,
in the following denoted by ASpec,γ and ASpec,V , respec-
tively, and the third term is the weak annihilation contri-
bution, denoted by AAnnih.

In the three terms of (2), the V0 meson (ρ0, ω and
Φ) produced in the transition is allowed to convert into
a photon through the vector meson dominance (VDM).
The diagrams thus contributing to the amplitudesASpec,γ ,
ASpec,V and AAnnih are shown in the Figs. 1a, 1b and 1c,
respectively. However, as a result of the specific form of the
strong Lagrangian of the heavy particles (see (11), (19) of
[10]), there is also direct emission of the photon from the
initial D meson, as exhibited in diagrams (C) and (D) of
Fig. 1a.

The square in each diagram of Fig. 1 denotes the weak
transition due to the effective Lagrangian Lw (1). This
Lagrangian contains a product of two left handed quark
currents (ψ̄1ψ2)µ, each denoted by a dot on Fig. 1. In our
model, the left handed currents will be expressed in terms
of the relevant hadronic degrees of freedom: D, D∗, P and
V . In our notation in the diagram (B), for example, the
hadronic current J2 creates V meson, while the hadronic
current J1 annihilates D and creates V0 at the same time.

In [10] (FS) which also uses the hybrid model for these
decays, most diagrams exhibited in Fig. 1 have already
been calculated. We shall not repeat this calculation here
and shall combine the results of FS with those of our sys-
tematic approach, to obtain the full D → V γ amplitude
in the factorization approximation. We rely on FS as a
complementary source for various basic expressions giv-
ing here only those formulae which are directly necessary
for the calculations of the present paper.

The principal contribution missing in FS is due to di-
agram (B) of Fig. 1a. As it turns out, the inclusion of
this parity - violating (PV) contribution, alters consider-
ably the numerical values of the FS amplitudes in the PV
sector and leads to the set of predictions for these decays
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Fig. 2a,b. The quark level picture of
the diagram (B) of Fig. 1 (amplitude
AII

PV ): a represents the decays propor-
tional to a1, for example D+

s → ρ+γ,
while b represents the decays propor-
tional to a2, for example D0 → K̄∗0γ

exhibited in Table 2, which will be discussed in the last
Section. The relevant expressions needed for diagram (B)
are given below.

The weak current J1 of diagram (B) (see Fig. 1) anni-
hilates quark c and creates one of the light quarks q (u, d
or s): Jµ

1 = q̄γµ(1 − γ5)c. Under chiral SU(3)L × SU(3)R

this quark current transforms as (3̄L, 1R). At the hadronic
level we impose the same chiral transformation and we re-
quire the current to be linear in the heavy meson fields
Da and D∗a

µ [18,12,13]

J1
µ
a = 1

2 iαTr[γµ(1 − γ5)Hbu
†
ba]

+ α1Tr[γ5Hb(ρ̂µ − Vµ)bcu
†
ca]

+ α2Tr[γµγ5Hbvα(ρ̂α − Vα)bcu
†
ca] + ... , (3)

where α = fH
√
mH and α1 and α2 are free parameters,

which have to be determined from the experiment. The
current (3) is the most general one in the leading 1/mc

order of HQET and next to leading order of chiral per-
turbation theory [18,12,13]. Here both the heavy pseu-
doscalar and the heavy vector mesons were incorporated
in a 4 × 4 matrix Ha

Ha =
1
2
(1+6v)(P ∗

aµγ
µ − Paγ5) , (4)

where a = 1, 2, 3 is the SU(3)V index of the light flavours,
and P ∗

aµ, Pa, annihilate a spin 1 and spin 0 heavy meson
Qq̄a of velocity v, respectively. The fields V and u incor-
porate the light pseudoscalars and are given in FS. The
field ρ̂ incorporates the light vector mesons

ρ̂µ = i
g̃V√

2
ρµ , ρµ =




ρ0
µ+ωµ√

2
ρ+

µ K∗+
µ

ρ−
µ

−ρ0
µ+ωµ√

2
K∗0

µ

K∗−
µ K̄∗0

µ Φµ


 . (5)

where g̃V = 5.9 was fixed in the case of exact flavour
symmetry (see e.g. references in FS).

The weak current J2 of diagram (B) (see Fig. 1) creates
the final V meson. Its matrix elements are given by [10]

〈V (εV , q)|J2µ|0〉 = ε∗µ(q)gV (q2) , (6)

where the couplings gV (m2
V ) are measured in the lep-

tonic decays of the mesons: gρ(m2
ρ) ' gρ(0) = 0.17 GeV 2,

gω(m2
ω) ' gω(0) = 0.15 GeV 2, gΦ(m2

Φ) ' gΦ(0) =
0.24 GeV 2 and gK∗ = (mK∗/mρ)gρ.

For the calculation of the amplitude, we also need the
γ − V0 interaction Lagrangian, given by the vector meson
dominance like in [8,10]

LV γ = − e√
2
Bµ(gρρ

0µ +
gω

3
ωµ −

√
2gΦ

3
Φµ) , (7)

where Bµ is the photon field.

3 Decay amplitudes

In order to facilitate the incorporation of the results of
FS we shall adopt here their notation of the amplitudes,
namely Ai

PC , Ai
PV for the parity - conserving and par-

ity - violating parts, where i denotes classes of diagrams
identified below. The general gauge invariant amplitude
D(p) → V (pV )γ(q) is

A(D(p) → V (ε(V ), p(V ))γ(ε(γ), q))

= e
GF√

2
Vuqi

V ∗
cqj

{εµναβq
µε∗ν

(γ)p
αε∗β

(V )APC

+i[(ε∗(V ) · q)(ε∗(γ) · p(V ))

−(p(V ) · q)(ε∗(V ) · ε∗(γ))]APV }, (8)

with APC = AI
PC +AII

PC +AIII
PC and APV = AI

PV +AII
PV +

AIII
PV . Now, concerning the classification of diagrams, AI

PC
will denote the contribution from diagrams (A) and (C)
(see Fig. 1) which encompass the D∗ → Dγ transition,
while AII

PC will denote diagram (G) which contains the
P → V γ transition. AIII

PC , AIII
PV denote the contribution

of the long distance penguins described by Fig. 1 of FS.
On the hadronic level they are represented by the dia-
grams (E) and (F ), respectively, and they vanish in the
exact SU(3) flavour limit as shown in FS. We also define
two other classes of parity violating diagrams: AI

PV will
include the bremsstrahlung-like diagrams (D) and (H),
whereby the photon emission is due to the direct coupling
to charged initial D or final V mesons. Finally, AII

PV , which
has not been studied before, will denote the contribution
represented by the diagram (B). As this contribution will
be considered in detail below, we present its quark level
picture in Fig. 2: Fig. 2a represents the diagram (B) for
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the decays proportional to a1, for example D+
s → ρ+γ,

while Fig. 2b represents the decays proportional to a2, for
example D0 → K̄∗0γ.

Now we turn to the calculation of the amplitude for the
diagram (B), while the remaining contributions have been
studied in FS. First we parametrize the matrix element
〈V0|Jµ

1 |D〉 in the usual way [19]

〈V0(q, εV 0)|Jµ
1 |D(p)〉

=
2V (Q2)

mD +mV 0
εµναβε∗V 0νpαqβ

+i2
ε∗V 0 ·Q
Q2 mV 0Q

µ(A3(Q2) −A0(Q2))

+i(mD +mV 0)

×
[
εµ∗
V 0A1(Q2) − ε∗V 0 ·Q

(mD +mV 0)2
(p+ q)µA2(Q2)

]
, (9)

where Q = p − q. In fact the diagram (B) contributes
only to form factors A0, A1, A2 and A3, which will be
determined using the model described above. The form
factor V (Q2) gets contribution from the diagrams (A) and
(C) of Fig. 1, its results are explained in FS, therefore we
will leave this contribution aside here. In order that these
matrix elements be finite at Q2 = 0, the form factors
satisfy the relation [19]

A3(Q2) − mD +mV 0

2mV 0
A1(Q2) +

mD −mV 0

2mV 0
A2(Q2) = 0 ,

(10)
and A3(0) = A0(0).

Using the currents (6) and (9) and the relation (10)
we determine the amplitude of the diagram (B) for D+

s →
ρ+Φ as an example:

APV (D+
s (p) → ρ+(p(V ), ε(V ))Φ(q, ε(Φ)))

=
GF√

2
a1V

∗
csVud(mD +mΦ)

×
(
ε∗µ
(Φ) A1(m2

V ) −
(ε∗(Φ) · p(V ))

(mD +mΦ)2
(p+ q)µA2(m2

V )
)

×gV ε∗(V )µ. (11)

According to the vector meson dominance (7), the ampli-
tude for D+

s → ρ+γ is obtained, if the polarization ε∗µ
(Φ)

is repaced by ε∗µ
(γ)egΦ/(3m2

Φ). However, the amplitude for
D+

s → ρ+γ decay should satisfy the gauge invariance con-
dition. It was found [20,21] for the case of B → K∗γ decay,
that it is useful to analyze the heavy meson decays into
V V0 in terms of helicity amplitudes of the two final vector
meson: A++, A−− and A00. Thus, the application of gauge
invariance condition to D → V V0 decay, with V0 → γ con-
version, means that the A00(D → V V0) helicity amplitude
must be discarded. Under a gauge transformation as im-
plemented by εµ(γ) → qµ, we derive the following general
condition for the D → V V0 → V γ decays
∑
V 0

(mD +mV 0)
[
A1(m2

V ) − m2
D −m2

V

(mD +mV0)2
A2(m2

V )
]

= 0

(12)

imposed for the decays of type (B) graphs, presented on
Fig. 1a. Consequently, the AII

PV amplitude can be ex-
pressed in terms of the form factor A1(m2

V ) only.
Now we determine the form factors A1(m2

V ) for the
diagram (B) using the current (3) and parametrizing it
in the form of (9). The weak current (3) determines the
form factor in the heavy quark limit, i.e. at the maximum
momentum transfer Q2

max = (mD −mV 0)2

ADV0
1 (Q2

max) = − g̃V√
2
2α1

√
mD

mD +mV 0
. (13)

We assume the pole dominance behaviour of the form fac-
tors [12,13] and at Q2 = m2

V we determine

ADV0
1 (m2

V ) = −g̃V

√
2α1

√
mD

mD +mV 0

×
1 − (mD−mV 0)2

m2
D

+
1

1 − (mV )2
m2

D
+
1

, (14)

where D1+ is the mass of the q̄c JP = 1+ bound state.
We use the masses of s̄c and d̄c bound states to be 2.53
GeV and 2.42 GeV as in [13]. The free parameter α1 is
determined by using the average of experimental A1(0)
values forD+

s → Φlνl andD+ → K̄∗0lνl. We obtain |α1| =
0.171 GeV 1/2 and use this value for the prediction of all
D → V γ decay rates.

Using the formalism described above, with (11), (12),
(14), we obtain AII

PV for the various decay channels.
The Cabibbo allowed decay amplitudes, which are pro-

portional to the product |VudV
∗
cs|, are:

AII
PV (D0 → K̄∗0γ) = −a2

[
gρgK∗

m2
ρ

(mD +mρ)|ADρ
1 (m2

K∗)|

+
gωgK∗

3m2
ω

(mD +mω)|ADω
1 (m2

K∗)|
]

1
m2

D −m2
K∗

(15)

AII
PV (D+

s → ρ+γ) = a1
2gΦgρ

3mΦ
(mD +mΦ)|ADsΦ

1 (m2
ρ)|

× 1
m2

Ds
−m2

ρ

. (16)

The Cabibbo suppressed amplitudes AII
PV proportional

to the Cabibbo factor |VsuV
∗
cs| are

AII
PV (D+ → ρ+γ) = −a1

[
g2

ρ

m2
ρ

(mD +mρ)|ADρ
1 (m2

ρ)|

−gωgρ

3m2
ω

(mD +mω)|ADω
1 (m2

ρ)|
]

1
m2

D −m2
ρ

(17)

AII
PV (D+

s → K∗+γ) = a1
2gΦgK∗

3mΦ
(mDs +mΦ)

×|ADsΦ
1 (m2

K∗)| 1
m2

Ds
−m2

K∗
(18)

AII
PV (D0 → ρ0γ) = − a2√

2

[
g2

ρ

m2
ρ

(mD +mρ)|ADρ
1 (m2

ρ)|
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Table 1. The parity conserving and parity violating amplitudes for
charm meson decays in units 10−9 GeV −1. The amplitudes Ai

PC,PV

get contributions from different diagrams in Fig. 1: (A) and (C) con-
tribute to AI

PC , (D) and (H) contribute to AI
PV , (G), (B), (E) and (F)

contribute to AII
PC , AII

PV , AIII
PC and AIII

PV , respectively. The amplitudes
AI

PC , AII
PC , AIII

PC , AI
PV and AIII

PV were calculated in [10], while the
amplitude AII

PV represents the additional contribution calculated here.
The first two decays are Cabibbo allowed, while the last two are doubly
Cabibbo suppressed

D → V γ |AI
PC | |AII

PC | |AIII
PC | |AI

PV | |AII
PV| |AIII

PV |
D0 → K̄∗0γ 6.4 6.2 0 0 5.5 0
D+

s → ρ+γ 1.4 7.3 0 7.4 4.3 0
D0 → ρ0γ 0.82 1.0 0.02 0 0.71 0.03
D0 → ωγ 0.73 1.07 0.02 0 0.63 0.03
D0 → Φγ 1.8 1.34 0 0 1.8 0
D+ → ρ+γ 0.59 1.3 0.02 1.6 1.3 0.03
D+

s → K∗+γ 0.41 2.3 0.02 2.1 1.2 0.04
D+ → K∗+γ 0.16 0.42 0 0.43 0.37 0
D0 → K∗0γ 0.33 0.32 0 0 0.28 0

+
gωgρ

3m2
ω

(mD +mω)|ADω
1 (m2

ρ)|
]

1
m2

D −m2
ρ

. (19)

AII
PV (D0 → ωγ) =

a2√
2

[
g2

ρ

m2
ρ

(mD +mρ)|ADρ
1 (m2

ω)|

+
gρgω

3m2
ω

(mD +mω)|ADω
1 (m2

ω)|
]

1
m2

D −m2
ω

. (20)

AII
PV (D0 → Φγ) = −a2

[
gρgΦ

m2
ρ

(mD +mρ)|ADρ
1 (m2

Φ)|

+
gωgΦ

3m2
ω

(mD +mω)|ADω
1 (m2

Φ)|
]

1
m2

D −m2
Φ

. (21)

For completeness, we give also the parity violating parts of
the amplitudes for doubly suppressed decays proportional
to |VusV

∗
cd|:

AII
PV (D+ → K∗+γ) = −a1

[
gρgK∗

m2
ρ

×(mD +mρ)|ADρ
1 (m2

K∗)|
−gωgK∗

3m2
ω

(mD +mω)|ADK∗
1 (m2

K∗)|
]

1
m2

D −m2
K∗

, (22)

AII
PV (D0 → K∗0γ) = a2

[
gρgK∗

m2
ρ

(mD +mρ)|ADρ
1 (m2

K∗)|

+
gωgK∗

3m2
ω

(mD +mω)|ADω
1 (m2

K∗)|
]

1
m2

D −m2
K∗

. (23)

4 Discussion

We present numerical results for the amplitudes AI
PC ,

AII
PC , AIII

PC , AI
PV , AII

PV and AIII
PV in Table 1, where Ai

denotes

Ai
PC(V ) = e

GF√
2
Vuqj

V ∗
cqk
Ai

PC(V ) . (24)

and i runs over the nine decays studied. The amplitudes
AII

PC are calculated from (15)–(23), while for the rest of
the amplitudes we use the values obtained in FS. Although
we have the values of Table 1, which encompass all the am-
plitudes arising from our factorization scheme and hybrid
model, we cannot predict at this stage definite values for
the decay rates. This is due to the fact that the signs of
several constants entering the expressions of Ai

PC , Ai
PV

(like λ′, λ, CV V Π , gV , α1, defined in FS and here) are
not determined yet from the experimental data. Thus, we
must contain ourselves in the present only to the range of
values, which are obtained by assuming all possible rela-
tive signs for the various constants. We also remark that
AIII

PC , AIII
PV are usually one to two orders of magnitude

smaller than the other amplitudes and will affect the rates
only in the case of cancellations occuring among the rest
of amplitudes.

We calculate the branching ratios of the D → V γ de-
cays with the help of

Γ (D → V γ) =
1
4π

[
m2

D −m2
V

2mD

]3

(|APC |2+|APV |2), (25)

and we present the possible range of values for the branch-
ing ratios in Table 2. We compare the present results,
denoted by (a), with the results obtained in previous ap-
proaches. The results of the approach [10] are denoted
by (b), the results of [3] by (c), and the results of [7] by
(d) (we specify a1 = 1.26 and a2 = −0.55 in their for-
mulas). The quark model calculation of [5] predicts the
branching ratio for the Cabibbo allowed decays BR(D0 →
K̄∗0γ) = 8.6 · 10−6 and BR(D+

s → ρ+γ) = 2.1 · 10−5,
which are smaller in comparison with the results we ob-
tain here, as well as compared with the predictions of [3]
and [10]. On the other hand, the calculation of [6], which
also uses a quark model, leads to a larger branching ra-
tio BR(D0 → K̄∗0γ) = 1.1 · 10−4, which is an order of
magnitude larger than obtained in [5] and closer to our
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Table 2. The branching ratios for D → V γ decays. The first column (a)
contains the results of the present approach. The next three columns present
the results of [10] (b), [3] (c), and [7] (d). The first two decays are Cabibbo
allowed, while the last two are doubly Cabibbo suppressed

D → V γ BR(a) × 105 BR(b) × 105 BR(c) × 105 BR(d) × 105

D0 → K̄∗0γ (20 − 80) (34 − 50) (7 − 12) 0.18
D+

s → ρ+γ (6 − 36) (10−2 − 3) (6 − 38) 4.4
D0 → ρ0γ (0.4 − 6.3) (1.8 − 4.1) (0.1 − 0.5) 0.38
D0 → ωγ (0.1 − 0.9) (0.02 − 0.8) ' 0.2 −
D0 → Φγ (0.4 − 1.9) (0.04 − 1.6) (0.8 − 3) −
D+ → ρ+γ (0.4 − 6.3) (1.8 − 4.1) (2 − 6) 0.43
D+

s → K∗+γ (1.2 − 5.1) (2.1 − 3.2) (0.8 − 3) −
D+ → K∗+γ (0.03 − 0.44) (0.25 − 0.5) 0.1 − 0.3 −
D0 → K∗0γ (0.03 − 0.2) (10−4 − 0.4) ' 0.01 −

estimate. We notice that the parity violating amplitudes
calculated within the present approach have changed sig-
nificantly in comparison with the results of FS. Overall,
inspection of Table 2, indicates that our predictions in the
present paper are closest to those of [3]. When measure-
ments of a few channels will be available it will be possible
to adjust the range of the various branching ratios and to
make firmer predictions, hopefully allowing to select the
best suited model.

The measurable ratio APC/APV can also be used to
distinguish between the various models. However, since at
the present stage we cannot specify the relative signs of
the various components of each of these amplitudes, we
are unable to make any sensible statement about these
ratios.

We summarize our results as follows: we have pre-
sented a calculation of the radiative D → V γ decays us-
ing a model which contains all classes of diagrams arising
from the factorization approach for the D → V V 0 am-
plitude, from which the radiative decays are obtained by
use of vector meson dominance. In the calculations of the
various matrix elements, we use a hybrid model [12,13]
which combines heavy quark techniques with the chiral
Lagrangian. In view of uncertainties related to the cou-
pling constants involved, we can predict at this stage only
ranges for the branching ratios of the various decay chan-
nels, which are given in Table 2. We emphasize that the
Cabibbo allowed decays D0 → K̄∗0γ and D+

s → ρ+γ are
calculated to be fairly frequent, with branching ratios of a
few times 10−4 and we expect their detection soon. Some
of the Cabibbo suppressed modes, like D+,0 → ρ+,0γ may
also occur with branching ratios close to 10−4. Experi-
mental results on these modes are eagerly awaited and will
certainly contribute to clarify the long distance dynamics
leading to these radiative decays.
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